您好、欢迎来到现金彩票网!
当前位置:2019跑狗图高清彩图 > 向量 >

向量线性无关的条件

发布时间:2019-07-07 18:42 来源:未知 编辑:admin

  可选中1个或多个下面的关键词,搜索相关资料。也可直接点“搜索资料”搜索整个问题。

  展开全部两个向量的话就是两者不成比例。多个向量的话,通俗一点,就是不存在其中某个向量能被其他向量线性表出。

  用数学上准确的定义就是:一组向量a1 ,a2 ,……,an线=……=kn=0时成立

  在线性代数里,矢量空间的一组元素中,若没有矢量可用有限个其他矢量的线性组合所表示,则称为线性无关或线性独立(linearly independent),反之称为线性相关(linearly dependent)。例如在三维欧几里得空间R的三个矢量(1, 0, 0),(0, 1, 0)和(0, 0, 1)线, 1, 2)线性相关,因为第三个是前两个的和。

  1、向量a1,a2, ···,an(n≧2)线性相关的充要条件是这n个向量中的一个为其余(n-1)个向量的线、一个向量线性相关的充分条件是它是一个零向量。

  3、两个向量a、b共线的充要条件是a、b线、三个向量a、b、c共面的充要条件是a、b、c线个n维向量总是线性相关。【个数大于维数必相关】

  在数学中,向量(也称为欧几里得向量、几何向量、矢量),指具有大小(magnitude)和方向的量。它可以形象化地表示为带箭头的线段。箭头所指:代表向量的方向;线段长度:代表向量的大小。与向量对应的只有大小,没有方向的量叫做数量(物理学中称标量)。

  向量的记法:印刷体记作粗体的字母(如a、b、u、v),书写时在字母顶上加一小箭头“→”。 如果给定向量的起点(A)和终点(B),可将向量记作AB(并于顶上加→)。在空间直角坐标系中,也能把向量以数对形式表示,例如Oxy平面中(2,3)是一向量。

  在物理学和工程学中,几何向量更常被称为矢量。许多物理量都是矢量,比如一个物体的位移,球撞向墙而对其施加的力等等。与之相对的是标量,即只有大小而没有方向的量。一些与向量有关的定义亦与物理概念有密切的联系,例如向量势对应于物理中的势能。

  几何向量的概念在线性代数中经由抽象化,得到更一般的向量概念。此处向量定义为向量空间的元素,要注意这些抽象意义上的向量不一定以数对表示,大小和方向的概念亦不一定适用。因此,平日阅读时需按照语境来区分文中所说的向量是哪一种概念。

  不过,依然可以找出一个向量空间的基来设置坐标系,也可以透过选取恰当的定义,在向量空间上介定范数和内积,这允许我们把抽象意义上的向量类比为具体的几何向量。

  两个向量的话就是两者不成比例。多个向量的话,通俗一点,就是不存在其中某个向量能被其他向量线性表出。用数学上准确的定义就是:一组向量a1 ,a2 ,……,an线=……=kn=0时成立本回答被提问者和网友采纳

  向量线。在向量空间V的一组向量A:,如果存在不全为零的数 k1, k2, ···,km, 使则称向量组A是线时,称它是线性无关。在线性代数里,矢量空间的一组元素中,若没有矢量可用有限个其他矢量的线性组合所表示,则称为线性无关或线性独立,反之称为线性相关。

  1.对于任一向量组而言,,不是线性无关的就是线.向量组只包含一个向量a时,a为0向量,则说A线, 则说A线.包含零向量的任何向量组是线.含有相同向量的向量组必线.增加向量的个数,不改变向量的相关性。(注意,原本的向量组是线性相关的)

http://chinoamobi.com/xiangliang/266.html
锟斤拷锟斤拷锟斤拷QQ微锟斤拷锟斤拷锟斤拷锟斤拷锟斤拷锟斤拷微锟斤拷
关于我们|联系我们|版权声明|网站地图|
Copyright © 2002-2019 现金彩票 版权所有