您好、欢迎来到现金彩票网!
当前位置:双彩网 > 向量化 >

业界 四大机器学习编程语言对比:R、Python、MATLAB、Octave

发布时间:2019-06-19 21:12 来源:未知 编辑:admin

  原标题:业界 四大机器学习编程语言对比:R、Python、MATLAB、Octave

  本文作者是一位机器学习工程师,他比较了四种机器学习编程语言(工具):R、Python、MATLAB 和 OCTAVE。作者列出了这些语言(工具)的优缺点,希望对想开始学习它们的人有用。

  R 是一种用于统计计算和图的语言及环境。它是一个 GNU 项目,与贝尔实验室的 John Chambers 及其同事开发的 S 语言及环境类似。R 可以视为 S 的一种不同实现。二者存在一些重要差异,但使用 S 写的很多代码在 R 下运行时无需修改。

  Python 是一种用于通用编程的解释型高级编程语言,由 Guido van Rossum 创建并于 1991 年首次发布。Python 的设计强调代码可读性,使用了大量空格。它的结构使其在大规模和小规模编程中都能清晰明了。

  MATLAB(matrix laboratory)是一种多范型数值计算环境。作为 MathWorks 开发的一种专用编程语言,MATLAB 允许矩阵运算、函数和数据绘图、算法实现、用户界面创建,以及与用其他语言(包括 C、C++、C#、Java、Fortran、Python)写成的程序进行交互。

  尽管 MATLAB 的设计初衷是数值计算,但其中的可选工具箱使用 MuPAD symbolic engine,具备符号计算能力。额外的包 Simulink 添加了图多领域模拟和针对动态和嵌入系统的基于模型的设计。

  Octave 可以看作是商业语言 MATLAB 的 GNU 版本,它是一种脚本矩阵语言(ing matrix language),其语法有大约 95% 可与 MATLAB 兼容。Octave 由工程师设计,因此预装了工程师常用的程序,其中很多时间序列分析程序、统计程序、文件命令和绘图命令与 MATLAB 语言相同。

  下表列举了数据科学家和机器学习工程师的常用工具,读者可以查看这些工具的流行度。

http://chinoamobi.com/xianglianghua/175.html
锟斤拷锟斤拷锟斤拷QQ微锟斤拷锟斤拷锟斤拷锟斤拷锟斤拷锟斤拷微锟斤拷
关于我们|联系我们|版权声明|网站地图|
Copyright © 2002-2019 现金彩票 版权所有